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Abstract. A semiempirical local approach to the problem of eleclmn mmlation at 
localized defect stales in malids is presented. 'me approach modifies any quantum- 
chemistry rheme bj adding a erlain mmction to the R x k  matrix, thus permitting one 
(0 obtain sellconsistently cumlalion m m t i o n s  to all ground-state parameters of fhe 
defecl. lbe theory has been applied to the large-unitcell models of the dangling-band 
defects SkV0 and SI:(VH,)-. n e  mulls of the calculations are useful far investigation 
of negative-U properties. 

1. Introduction 

The quantitative description of electron correlation (e.g. calculation of corrections 
that make a picture of independent electrons suitable) is an outstanding problem of 
solid-state physics. Semiconductor physics contains an important topic in this regard: 
the properties of certain defects are defined hy electron correlation. One such defect 
is the negative&' centre, one local deep state of which does not contain electrons; if 
an equilibrium is defined hy low values of chemical potential EF, but a shift of E, 
upwards maintains a new equilibrium, the deep level acquires an electron pair. ?he 
occupation of the deep level by a single electron is unstable at any EF position. The 
interaction between electrons of the deep-level pair provides a correlation correction 
U to the total energy of the one-electron approximation. The negative4 properties 
are produced by different influences of deep-level occupation-number on the two 
energy-reconstruction terms (correlation term and electron-lattice term). 

This paper reports a self-consistent field (SCF) calculation scheme that yields 
corrections to the Hartree-Fock (HF) total energy, electron density, energy levels 
and other ground-state characteristics of a defect in a solid. All mrrections are 
related only to the effective electron correlation at localized defect states, i.e. the 
energy correction is part of the total correlation energy of the solid (this part may be 
positive). So, the approach designed is a practical way to modify the HF SCF method 
for electronic structure calculations of deep centres in solids. 

The present method is theoretically based on a local approach (LA) to the electron 
correlation problem (Stollhoff and FUde 1980). By contrast with molecular ob initio 
methods (configuration interaction, generalized valence-bond methods) applicable 
only to molecules or to cluster models of solids, the LA is model-independent. On the 
other hand, the powerful ab initio density-functional approach to electron correlation 
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in solids adapts poorly to defect calculation problems, such as adiabatic energy curves 
of lattice reconstruction. The LA method permits one to carry out defect calculatiow 
with fewer difficulties. 

This paper also deals with the application of the modified HF SCF method to 
the large-unit-cell (Luc) models of two vacancy-hydrogen (v-H) centres in Si. The 
purpose was to describe the effective electron correlation at Si dangling bonds (DB). 
In addition to their well known practical importance (Pearton a U/ 1987), Si V-H 
centres are appropriate for testing a new calculation scheme, because they have been 
thoroughly investigated by several theoretical approaches. 

SiV. Experimental data for the Si vacancy (Watkins 1986) are explained by 
negative4 centre phenomenology (Baraff el al 1980), which in turn uses the results 
of densig-functional calculations of an unreconstructed neutral vacancy (Baraff and 
Schliiter 1979, Bernholc et a1 1980) and of its multiplet and Jahn-'Mer analysis 
(Lannoo et a1 1981). The electron correlation effect at Si unreconstructed vacancy 
DBs has also been investigated by a generalized valence-bond method (Surratt 
and Goddard 1978). The numerical results of the two ab initio approaches 
disagree because (i) they are applied to opposing models, and (ii) their correlation 
approximations are constructed differently-either with only hound DB states or with 
all defect electrons. Application of the semiempirical LA method to the LUC model of 
reconstructed S i :v  in this work demonstrates the features of both ab initio methods. 
Only two electrons of the hound DB state are assumed to correlate, but still the SCF 
process involves other states in correlation corrections (first of all, the unbound state 
resonant with the valence hand). 

S i W 3 .  The isolated DB of this centre is the main subject of amorphous Si (a-Si) 
theoretical investigations. A theoretical prediction about its negative4 properties 
(Bar-Yam and Joannopoulos 1986) has no clear experimental evidence (Pantelides 
1988). Calculations of the present work support the negative4 theory, but insist on 
the effective correlation energy parameter U being small, which agrees with recent 
experiments on intrinsic a-Si (Essick and &hen 1990). 

2. Then?: a simple semiempirical local approach to the Fock matrix 

A semiempirical local approach (LA) to electron correlation derives from the ansa& 

where +HF is a many-electron wavefunction of the HF approximation, and is a 
ground-state wavefunction of correlated electrons (Stollhoff and Fulde 1980). The 
semiempirical calculation procedure is defined in a rather general way with the use 
of a correlation operator S. First, the local regions (r 1 m) are introduced as 
one-electron linear combinations of atomic orbitals (LCAO) of the chosen model: 

Here p denotes atomic orbital (AO) type-usually it means a set of the main, orbital 
and magnetic quantum numbers-and a denotes the atom on which the AO is centred. 
For example, in the LUC model (section 3) (r  I pa)  is a sum of AOS centred on the 
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ath atom of every Rth  LUC (R is the Bravais vector of the lattice in which LUC is 
the primitive unit cell). Coefficients T,,,,,~ make up a set of parameters. A second 
set of parameters qmm, is defined by the chosen type of electron correlation in the 
local regions: 

For example, Om,, may have Hubbard form Om,, = 6,,,n,,nmp where n,, is 
the occupation number of the local region m with spin s (a means spin up, p means 
spin down). 

After setting up the basic correlation ansutz (1)<3), the LA proceeds to second- 
order expansion of the state (1) energy and minimization of this expansion by varying 
the coefficients q,,,. Though the correlation unsatz (1)-(3) is similar to ab initio 
methods, because the energy expansion includes wo-electron matrix elements of the 
Coulomb interaction, the LA is not a rigorous many-electron method, obtained from 
perturbation theory. Thus, if the empirical coefficients ymra are not optimized, it 
makes no sense ta carry out the difficult calculation of two-electron integrals. Besides, 
application of the LA is only recently possible for some atoms, molecules and a few 
perfect crystals (Stollhoff 1990). 

So, we see good reason to simplify the LA, conserving its HF reference and self- 
consistent nature. IXvo steps of such simplification are presented in this section 
(Moliver 1988, 1991). 

The first simplifying step reduces the parameter set by use of the following 
assumption: the local regions of strong correlation coincide with some of the 
molecular orbitals (MO) of a defect. This implies that MOS can be produced by 
some quantumchemistry procedure. The MOS labelled by i = 1,2, ... , N and spin 
s = u,p  are LCAO: 

(r I is) = C c:a (r  I pa) .  
pa 

The LCAO coefficients c;h form the electron density matrix 

(4) 

s i = l  

where Np is the highest occupied MO (MOs are ordered by HF one-electron energies). 
The HF method does not need spin-nondiagonal elements of the type P,,:,,,;;, but, 
bearing in mind the correlation problem, we shall distinguish them and canserve the 
unusual double spin index in (5). Introducing a localization criterion for every MO, 

p i r =  (c' ,JZ-p O < p < l  (6) 
W€SlW) 

we obtain a new set of local regions with a single parameter p ,  instead of (2) .  In fact, 
(6) means the following: do AOS from the subset S{pa) make up more or less than 
part p of the isth MO (4)? So, the local regions are defined as those MOS for which 
p i s  > 0. The localization threshold p separates localized MOS occupied by strongly 



9974 S S Moliver 

correlated electrons from delocalized ones (such as crystal valence-hand or resonant 
defect states) that contribute negligibly to the defect correlation energy. For example, 
studying the negative-U centre energy dependence on reconstruction, one can omit 
the constant crystal part of the correlation and take into account only the effective 
correlation of localized electrons (Baraff el ul 1980). 

The second simplifying Step retains as a cadlculation basis the HF SCF energy- 
minimization procedure for the E A 0  coefficients of (4), instead of the minimization 
procedure for the LA unsufz coefficients of (3). Since HF SCF minimizes the total 
electron energy, approximated by the bilinear form of the density matrix (S),  the 
correlation correction to the HF energy must take the form 

(summing over all indices). Quantum-chemistly calculation schemes minimize (7), 
using the eigenvalue and eigenvector procedure for the Fock matrix and LCAO 
coefficient vector. Variation of (7) by LCAO coefficients (see (5)) gives an eigenvalue 
problem with the Fock matrix correction 

(summing over repeated indices). 
In order to express (8) through the localization criterion (6), we need some model 

for the electron correlation at the localized MOS (such as model (3) of the LA). The 
well known Hubhard model Hamiltonian 

lhlC 

AH = U ni,nip (9) 

is appropriate for the effective electron correlation at the localized defect states 
(Baraff el d 1980). In (9), U is the effective correlation energy, ni, is the electron 
occupation operator for isth MO, and summation is limited to localized MOS. The 
correspondence between (7) ana <Yj may be esrabiiskned by 

Nr 

0 x < o  
( 1  x > o  

9 ( x )  = 

Correlation Correction (10) is defined by all doubly occupied MOS, and through 
expressions (6) and (5) A E  obtains a densiy-functional character (a good argument 
in favour of a semiempirical approximation). In addition to U, there appears here a 
new parameter y-a smoothing constant for the step function 9. 

The set of localization parameters-threshold p, smoothing constant Y and 
localized defect state AO subset S{@a)-must be found empirically during HF 
calculations. The subset S { p )  includes AOS of defect neighbours, so that linear 
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combinations of these Am describe rather well only localized defect states but not 
delocalized ones. As to y, it must be chosen so that variations of threshold p f y 
would not change the separation of MOS on localized and delocalized types previously 
established by criterion (6). A value of y with this property always exists, since the 
energy levels of localized defect states are separated from the continuous spectrum 
of delocalized states of the solid. Therefore, we can use a smooth approximation of 
the step function in (10). 

Putting (6) into (10) and changing 19 by a y-smoothed function, we obtain a LCAO 
correction to the total energy 

Now we have to transform (11) into the quantum-chemistry form (7). Staying 
within the semiempirical calculation scheme, it makes no sense to look for some 
elaborate conversion of (11). The simplest solution is just to take MO averages 
instead of those expressions in (11) which are multiplied by density-type functions of 
the LCAO coefficients: 

So, if we introduce averages 

1 

and use density-matrix definition (S),  A E will become a linear function of density, 
i.e. we obtain the first term of (7): 

U 
A E  = - 

4 PP&,,~:(  6pPr6,,,6,,, [(t - p a l s  + fp2Az) 
I 

s a *  
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Here 6,a,sta,,) equals 1 if p a  E S { p a ) ,  and 0 otherwise. The weight w ,  0 < w < 1, 
is introduced because the last term of (11) can be converted with the use of 
averages (12) by two different arrangements (during calculations it was assumed that 
w = 0.5). The first arrangement contains a diagonal element of the density matrix 
(term proportional to w in (13)); the second contains a non-diagonal element (term 
proportional to ( 1  - w ) ) .  

The correlation correction (13) to the HF energy is a linear function of the electron 
density; the bilinear term of (7) is not used. Of course, there is a way to extract this 
bilinear term from ( l l ) ,  but it seems to be useless, because expression (11) itself is 
rather crude, being based on a one-site approximation (9) with a single parameter U. 

It has to be underlined that correlation correction (13) really has some features of 
electron mrrelation: as was mentioned above, the HF approximation does not need 
spin-nondiagonal density-matrix elements, while (13) contains them. 

Finally, we can write down the Fock matrix correction for practical use in 
the framework of standard quantum-chemistry calculations of defect systems with 
localized states. The following sections of this paper investigate only closed- 
shell defect models (the restricted HF approximation). Coefficients (12) in this 
approximation do not depend on spin indices; therefore, the closed-shell Fock matrix 
is 

Self-consistency is the most useful property of correction (14). Though electron 
density is absent in (14), the averages (12) are defined by the density matrix, and 
therefore they vary at every step of the SCF process. Thus, the calculation tactics will 

after achieving a certain degree of HF self-consistency. With these tactics, variations 
of (12) at evely step will be small and will decrease step by step, the total electron 
energy will converge to a minimum, and all HF ground-state characteristics (one- 
electron energies, electron density) will obtain correlation corrections. Calculations 
described in section 4 prove this. 

- . ._ br: S U ~ ~ S S I U I  U wrreciiun (i4j is rrui Lrv~hcli liiuiiiig iiic i&i iic:atiCLi step, b G  

3. The MO KAO HF calculation scheme, large-unitsell model and INDO 
parametrization for Si 

The WF ground-state electron structures of perfect and defect Si crystals have been 
obtained in this work by the SCF E A 0  method (Pople and Beveridge 1970) with a 
modified intermediate neglect of differential overlap (INDO) parametrization (Shluger 
and Kotomin 1981). The basic LUC crystal model included 16 Si atoms: the two-atom 
primitive unit cell of a crystal (FCC diamond lattice) was doubled along each of the 
(110) basic Bravais vectors. All defect LUCF have been derived from this ideal crystal 
Si16 W C .  
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During Ebt minimization for 316, while d, was fixed, the hybridization 
parameters of (15) were varied, with the purpose that the input PEpa values would 
become equal to the output self-consistent diagonal density-matrix elements Pfiapa 
of (5). Only after exit from this feedback loop of the SCF iterations was a new point 
added to the graph &,,(do). As a result, this graph with a high precision (better 
than au) gave a parabolic curve of adiabatic compression with optimal d, and 
PE,,, at the minimum point, where the internal pressure of a crystal model is zero. 

All parameters of the calculations may be found in table 1. After optimization 
of Si16 we get a model of almost the Same quality as had been achieved by CNDO 
(Harker and Larkins 1979). Fbr example, the energy spectrum is shown on figure l(u). 
Of course, it is not the best model within its class of computations (Deak and Snyder 
1981). but is still a suitable one to test the theory proposed in section 2 In the course 
of Si DB defect calculations it is very important to exclude the intrinsic pressure of 
the crystal model. That is why the minimization of d, described above Seems to be 
necessary for any quantum-chemistry calculations. 

lhbk 1. Paramelen of MO LCAO modified lNDO calculations. 

Parameter Unifs ?his wok Other work 

1.54 a 

1.54 a 

6.3 a 

4.5 a 

-6.4 a 

1.0144 
0.9952 
10.68 

1.93 
1.76 
23.03 
16.03 
-4.5 b 

0.93 a ,  0.63 
1.02.3 a ,  as9  
10.34 a. 10.26 ' 

i n  h =U-' 1.2 b 
eV 7.18 

It is well known that the HF method systematically overestimates the gap value of 
narrow-gap insulators and semiconductors, and does not reproduce conduction band 
dispersion in contrast with rather good valence band reproduction (figure l(u)). For 
example, one cannot find the Si minimal indirect-gap value Eg E Xi& on any 
w-calculated spectrum (Deak and Snyder 1987). The direct-gap value Eopt = TIS- 
rb is a better optimization criterion for the HF scheme than Eg, but not the 
most important one in studies of the ground-state properties (Harker and Larkins 
1979). While w-calculated values of energy gap and lattice constant are greater than 
the experimental ones, the local density approximation (LDA) usually underestimates 
them. This systematic discrepancy of HF and IDA has been studied for a long time, 
and it is assumed now that if one chooses HF or IDA as a basic approximation, 
one must define correctly a set of properties for comparison with the experimental 
data (Maksimov el ul 1989, Pisani et ul 1988). Fbr example, LDA is used for reliable 
calculations of energy levels, electron density and electron-lattice constans of defects, 
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~1 do[ I I  I]. 

while the ab inirio or semiempirical HF approximation is applicable to problems of 
property trends in defect series, sophisticated defect complexes, etc., especially in 
cases explained by interactions of a chemical bond type. 

4. Results of SkV" and Si:(VH3)- calculations: reeonstruetion and Mective 
currelation 

4.2. S i : p  (reconsirefed neufrd vacancy) 

%king one atom out of Si16, we get an ideal (unreconstructed) neutral vacancy model, 
ready for the closed-shell HF calculations, SilSV This ideal V is unstable, owing to 
the Jahn-Rller (JT) effect, which demands a reconstruction to take place as the 
superposition of three main lattice distortions near V relaxation (a), tetragonal (e)  
and trigonal (t) distortions. By the way, the SCF iteration process did not converge for 
ideal V Nonconvergence, which arises in computations using the HF scheme, has been 
named w instability. For ideal S k v ,  HF instability stems from partial occupation of 
the orbital triplet DB state Tz. In the first step of the HF iteration process three MOS 
of Tz acquire slightly different energies because of computer precision limitations. 
According to the HF scheme the electron pair will be placed on that MO of the triplet 
which occasionally has the lowest energy. After calculation of electron density during 
the next iteration cycle, the occupied DB MO energy level may be pushed up (in order 
to minimize El,,,) and may become higher than the energy level of the empty (in 
previous cycle) DB MO. If this takes place, the electron pair will be transmitted from 
one DB MO to another. The next iterations may repeat this swapping of occupancy 
and energy level ordering of WO DB MOS, making the iteration process unstable. The 
easiest way to bypass HF instability of the type considered is to distort the lattice in 
order to break the degeneracy of the DB state, i.e. to work only with a IT-reconstructed 
defect. 

Distortions a and e have been applied to the four nearest neighbours of y 
and only then has the SilSV minimal Etot been found (figure 2). According to 
experimental data (Watkins 1986), trigonal distortion is negligible: even a small t 
distortion increased E,, too much. 
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The electron structure of V (figure I(b)) is in agreement with both experimental 
and theoretical data (Baraff and Schluter 1979, Bernholc ef a1 1980). The MO A, has 
a small binding energy and is rather delocalized. This points to the resonant nature 
of this state (symmetrical s and sp3 combination of V neighbour ~ 0 s ) .  The partially 
occupied triplet T2 of ideal V, after JT reconstruction, splits into the occupied singlet 
B, and empty doublet E. The bonding DB state B, consists of two pairs of sp2-p 
type hybrids, each pair of which binds two atoms adjacent to V, which become closer 
if e distortion is positive (atomic pairs 1-4 and 2-3 on figure 2). The doublet E 
is antibonding: the AOS of V neighbours (mainly p) interfere destructively between 
atoms. 

With good precision it has been found that the V" electron-lattice interaction 
is linear near the equilibrium reconstruction. The binding energies of three 
vacancy levels and the @,-E) splitting are proportional to the deviations A Q  from 
equilibrium values Q(0) of distortions that give the minimum E,,, (figure 2): 

EA, = E h ( 0 )  + v , , A Q .  + V,A,AQ. Q. = 2&d, 

Q. = 2&ed, = E ~ - E ( O )  + 1.5VeAQ, 
(16) 

VeA, = -0.8 eV A-' V,,, = +1.3 eV A-' a(0) = -0.0018 ru 

V, = -1.2 eV A-' 

(Coordinate relative units (TU) are preferable, because the lattice wnstant do is an 
adjustable parameter. In order to find the atomic displacements, one must multiply 
ru by do and by the crystallographic vector of distortion; e.g. the S iSi  crystal bond 

The parameters of tetragonal distortion in (16) are in good agreement with 
band calculations of Baraff ef al (1980), who obtained V, = -1.12 eV A-' and 
e(0) = 0.023 TU. No references were found for electron-lattice parameters of the 
resonant A, state. Though the equilibrium relaxation a(0) is small (less than 1% Of 
crystal bond), it plavs an imwrtant role in correlation correction. 

The localization criterion (6) of effective correlation works well for all V 
reconstructions shown on figure 2. For the subset S{pa) ,  defining DB MOs, it is 
enough to take Si 3s and Si 3p AOS of the four atoms near V For p * y  = (23* I)% 
only the bonding DB state B2 is separated from all other occupied MO as a localized 
state (figure I(b)). Correlation corrections have been calculated with the Fock matrix 
correction (14) and with U = 0.25 eV, which is the effective correlation energy from 
the phenomenology of L3araff ef al (1980). Theory for the multiplet 

e ( 0 )  = 0.028 N. 

is 0.2 TU.) 

A:T;=T&,T;, a + b + c = 2 (17) 

of V" shows that near equilibrium reconstruction the ground-state term differs from 
the nearest excited term by more than U (Lannoo ef al 1981). Thus, the groundstate 
self-consistent correction of section 2 makes sense. Figure 2 clearly demonstrates 
the semiempirical nature of the IA: energy correction of DB effective correlation 
A E (shown as shaded energy difference on figure 2) is not constant-it depends 
on reconstruction. It is important that A E  _y 2U in equilibrium, varies with 
both distortions e and a, and even disappears at certain reconstructions. On the 
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other hand, A E  is small in comparison with adiabatic lattice reconstruction energy 
variations (see figure 2)- negative4 centre property. 

Energy minima of adiabatic cuwes on figure 2 occur for the same lattice 
distortions, regardless of whether or not the correlation correction is included, though 
the depths of the minima are changed. Thus, we conclude, in agreement with 
negative4 phenomenology, that the electron-lattice term in Etat is a leading one 
for Si:vO. 

4.2. .%:Hi (interstitial hydrogen atom in antibonding (AB) position) 

This centre plays an assisting role here, being a ‘doping impurity’ for the V-H defect 
LUcs with an odd number of electrons. After the ‘doping’ we get a LUC with an even 
number of electrons, and the closed-shell HF method can be applied (a and p spin 
electrons occupy equivalent pairs of MOS). The problem of the hydrogen atom state 
in Si crystal is a very complicated one (Deak et a1 1988, lW), hut here we have the 
simple task to find such a position of the H atom that slightly perturbs the electron 
density of a crystal. 

The INDO parameters of H simulate the H2 molecule (Shluger 1985), and they 
can be found in table 1. ?IN0 H atoms have been inserted into Si16 in equivalent 
AB interstitial positions, Le. forming straight lines SiSi-H,-T,, where T, means a 
symmetrical tetrahedral interstitial site. The interaction between Hi atoms has been 
found to decrease greatly when two AB directions inside the LUC were non-parallel 
and spaced by the largest possible distance. This Sil6Hi(AB)2 LUC bas been used for 
Hi calculations. 

All the Si atoms have been preserved in their crystal sites; the  single variation 
parameter was the S i H i  distance d(Si-H). E,, minimum configuration has been 
found at d(Si-H) = 0.13 ru, hut for the ‘doping’ purpose a value 0.16 ru fitted better, 
because it gave a small electron density perturbation. For d(Si-H) = 0.16 m, atomic 
charges were +0.03 au on Hi and -0.07 au on the adjacent Si. The electron spectrum 
of Hi (figure l(d)) differs from that calculated by the more precise (modified) MINDOB 
technique with first- and second-neighbour Si atom positions left free in the course 
of the search for the E,,, minimum (Deak el a1 1988). The bonding MO (named B on 
figure l(d)) must have a resonant energy level with valence band, and the antibonding 
MO A must be almost resonant with the conduction band. Certainly, if the Si atoms 
of the Si-Si-Hi line were free in this work to take positions predicted by M I ~ O B ,  
then d(Si-H) would decrease, tightening this bond and therefore increasing A-B 
splitting (figure l(d)). The second reason for the non-resonant deep-level electron 
structure of Hi may result from the valence bandwidth (rk-r,) underestimation by 
INDO parametrization of this work and overestimation by MImOB (Deak and Snyder 
1987). 

So, as a ‘doping impurity’ we take the unrealistic interstitial Hi, which slightly 
perturbs the crystal electron density and weakly interacts with the V-H centre of 
interest. 

4.3. Si:(VH3)- (reconstructed single dangling bond) 

Inserting three H atoms into Sil5V in the DB-passivating positions (as shown on 
figure 3), we get an ideal neutral DB model (Bar-Yam and Joannopoulos 1986). In 
order to stay within the closed-shell UF framework, a ‘doping’ Hi was added (i) at 
the largest possible distance from and (ii) with AB direction not parallel to the single 
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DB of VH,. It has been found, similarly to the ideal V case, that the electron 
structure of this SilSVH3Hi UIC could not be calculated without distortion of the 
V neighbourhood. During computations three Si atoms with passivated DB were 
excluded from the 1 distortion and preserved in their crystal sites. This simplification 
asumes that overlap of passivated DB is energy-unprofitable. Conformation properties 
of the model are depicted on figure 3 trigonal displacement 1 of the Si atom 
with DB and passivation distance d(Si-H) both greatly influence the equilibrium 
reconstruction. 

Figure 3. Em adiabatic awes of SilNH3Hi: (0) HF; (x )  HF with semiempirical LA, 
U = 0.01 au; (+) U = 0.02 au. Each set of cuwes united by shading represenu 
the reeomtmction with mnstant d(Si-H) written nearby in relative units. ?he absolute 
waor of Si(]) atom displacement is tdo[lll].  

I ...~~. Frnm the .~~~ nnt-le-~sn.than-twn.dimensional character of the adiabatic enerm surface, 
it may be concluded that one-dimensional calculations of VH, properties cannot be 
precise (Singh el af 1977). 

The Si15VH3Hi spectrum (figure l(c)) shows that Hi acts like a donor impurity, 
because the deep-level state B of Hi (figure I@)) passes its electron to the DB bonding 
state of VH,. Therefore, the DB state of VH, in this LUC iS doubly occupied, and 
figures l(c) and 3 show the properties of the charge state (VH,)-, known also as 
'l- or D- in aSi theory (Allan and Joannopoulos 1984). Of course, the LUC used 
is not large enough to diminish the parasitic effect of the VH,-Hi interaction. This 
effect shows helf by raising the deep level B of the periodic Hi model (figure l(d)) 
about 20% Eop,, if every second Hi is changed to VH, (figure l(c)). (E,,, = Ta-& 
varies slightly from one defect LUC to another. Since the HF method systematically 
overestimates the gap value (figure l(a)), relative units (per cent of E,,,,) fit better 
for deep levels.) However, the remaining VH,-H, interaction seems not to be crucial 
for a conclusion about (VH,)- properties, because the DB state B (figure I(c)) is 
almost pure hybrid sf of non-passivated Si and contains a negligible amount Of H, 
and its neighbouring AOS, and because the atomic charge of Si with DB is the largest 
in the LUC and varies slightly (-0.58 & 0.01 au for all reconstructions of figure 3). 
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Although a two-dimensional reconstruction model has an E,, minimum, the 
energy variations and barriers of the adiabatic surface on figure 3 are unrealistically 
large. In practice, Si V-H centre computations show that taking into account more 
lattice degrees of freedom makes adiabatic minima less sharp and lowers barriers. 
But the author could not obtain enough computer power to improve the results. 

In contrast with E,.,, the electron structure of (VH3)- does not change greatly 
with reconstruetion, e.g. the DB level B rises by about 1% of Ewt, if the reconstruction 
shifts from the main minimum d(Si-H) = 0.160 IU to the ‘metastable’ ones 0.165 or 
0.155 N (figure 3). 

The localization criterion (6) works very well in the whole reconstruetion range of 
figure 3. The subset S{pa}, defining a single DB, consists of unpassivated Si h and Si 
3p. The threshold parameter p f y = (48 + 8)% separates a single well localized DB 
state. The Wck matrix correlation correction (14) has been applied with U = 0.02, 
0.01 and a005 au. The first value has been taken according to supercell calculations 
of Si DB (Bar-Yam and Joannopoulos 1986). The two other reduced values give better 
convergence of the SCF process and higher precision, which permits one to check the 
calculations. From figure 3 it is seen that correlation corrections A E  calculated with 
different U values behave similarly, when the reconstruction changes, though the 
precision of self-consistency is proportional to U. 

Comparing A E  for VU and (VH,)- we find some important differences. 

(i) A E  has the same order as U far vu, but for (VH,)- in its adiabatic trigonal 
distortion minima A E  Y 2OU. 

(ii) A E  is positive for and negative for (VH3)-. Knowing the sign of A E  k 
not enough to judge the effective correlation sign of a centre; however, A E < 0 is a 
very strong argument in favour of negative4 behaviour (section 5). 

(iu) Not only E,,,, but also the DB state B level of (VH,)- has a non-negligible 
correlation oorrection in contrast with VU. Wr the equilibrium reconstruction 
(figure l(c)) AE, cz -60% U. 

The large value of A E  seems to be unrealistic, so the effective correlation 
energy U, as a matrix element of the Hamiltonian (9), cannot be identified with 
the correlation correction to E,, of VH,; otherwise, for V such identification is 
possible. 

5. Discussion: analysing negative-U centres with the semiempirical local approach 

In order to outline the applications of the semiempirical LA, devised above, we shall 
compare the results of ab initio methods with those reported in section 4. 

The generalized valence.-bond (GVB) method permits one to calculate A E,, the 
full difference between the HF and the a b  initio values of a correlated finite electron 
system Elel. This difference is the rigorous definition of ‘correlation energy’ and is 
always negative, because the GVB minimizes a many-electron wavefunction containing 
two-electron valence bonds, while the more restricted HF wavefunction (Slater 
determinant) consists of oneelectron MOS. Fbr the cluster model of unreconstructed 
Si:V (Si4H12V) the GVB calculations have been performed with two valence. bonds, 
ie. four eleetrons of the V DB have made up a correlated subsystem (Surratt and 
Gcddard 1978). In other words, the localized electrons have formed a multiplet 
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where A, is a singlet state with full V symmetry and T2 is a tetragonal triplet state. 
k r  the ground term of (18) it has been found that AE,, = -2.0 eV (figure 4). How 
can we compare this with the semiempirical LA correlation correction A E  shown on 
figure 2? 

Figure 4 Schematic new of "elation corrections 
oblained by different methods. @ and V t  are 
charge  state^ with four and three eledrons on - 1 LOA 1 1 GVB I 

U w DB (Vt correctionS are not actually calculated by 
A;T;,T;J;~ A:T;,T&T;, either method). The UIA multiplet stmcture is 

shifted to march the G W  one. 

(i) A E  estimates the correlation effect of repulsion between two electrons 
localized at the V bound state. It is well known that a full description of the effect 
by the HF is impossible. 

(ii) Being non-equivalent to the correlation energy AE,,, the semiempirical A E  
may be positive (figure 2) or negative (figure 3), depending on type, neighbourhood 
and self-consistent properties of a defect. 

(iii) AE,, has 'absolute' nature; it shows the error of the HF calculation 
for a defect with a certain number of localized electrons. In contrast, A E  has 
'relative' nature; it shows the error of the HF calculation of energy difference between 
two defect charge states-with single and double occupation of the localized state. 
Figure 4 shows this situation schematically. The closed-shell LA of this work gives the 
correction only to the Vu charge state with doubly occupied DB MO, while the GVB 
would modify any charge state HF energy. 

Alternatively to the GW~, the ab inirio method of the density functional (local 
density approximation (LDA)) permits one to calculate not only E,, (including 
correlation) but also multiplet structure and Jahn-Rller properties of a defect 
(Lannoo el a1 1981). Since the correlation energy cannot be extracted from E,o, 
of the IDA, we can compare only multiplet splittings of LDA and GVB (figure 4). 
There is almost identical splitting of the three lower terms of multiplets (17) and 
(18) of V", calculated by LDA and GVB, outlined by the dashes on figure 4. The U)A 
predicts this splitting for two strongly correlated electrons and for some far-from 
equilibrium 1T tetragonal distortion, while GVB predicts almost the same splitting for 
four correlated electrons of non-distorted v! It seems that the semiempirical LA can 
fill the gap btween two ab inilio correlation approximation constructions: (i) it takes 
into account only correlation of the strongly localized electrons (two DB electrons 
in the case of V"), but (ii) the correlation corrections are self-consistent and thus 
the resonant V" electrons of the A, state influence the corrections. The latter is 
confirmed by the same order of electron-lattice coefficients of resonant and bound 
states (16) and by the contribution of symmetrical JT distortion to A E  (figure 2).  
Therefore, we can recognize in the semiempirical LA description of the reconstructed 
Vu features of both ab initio approaches: of the LDA (electron correlation of two DB 
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bound electrons is compensated by the 1~ reconstruction, giving negative-U effective 
correlation, defined mainly by the conformation properties of the vacancy) and also of 
the GVB (correlation corrections depend self-consistenly on two DB resonant electrons 
through their sensitivity to the reconstruction). 

Now we shall turn to the problem of Si:VH, negative U. Can we prove that the 
(VH,)+ state, stable at certain Er, changes to (VH,)- with increase of Ep,  i.e. that 
(VH,)' is unstable at any EF? The proof is not easy, because the total energies of the 
closed-shell and of the open-shell HF approximations are not comparable. Besides, 
there is a non-controlled 'doping' Hi contribution. However, using the scheme of 
figure 4 and the spectrum of figure l(c), we can transform a negative&' condition 

E((VH,)';d',t') > E((VH,)-;d,t) - EF (19) 

to the 'closed-shell' one 

E&((VH3)'; d' ,  1 ' )  - Es((VH3)"; d ' , t ' )  

< - A E  + E=((VHs)-;d',t') - E,((VH3)-;d,t). (20) 

Here (d ' , t ' )  and ( d , t )  are the equilibrium distortions of the charge states 0 and 
-; E' is a non-self-consistent energy of the charge state 0 calculated with the 
MO of the state -. In (20) Koopmans's theorem (Pople and Beveridge 1970) for 
[E&((VH,)';d,t) - E,((VH,)-:d,t)] is used. From figure 3 data, the right side 
of (20) can be evaluated. Thus, the condition (20) bypasses the problem of direct 
comparison (19) between the open- (os) and closed-shell (cs) forms of HF. If the 
right side of (20) exceeds the open-shell HF self-consistency correction (E' - E)- ,  
then the centre has negative U. It is clear that even for U = 0.01 au (figure 3) the 
negative A E  values are rather large, making (20) very probably true. Besides, the 
conformation contribution to the right side of (20) (E  - E), can be estimated from 
figure 3 as having the same order as AE.  

6. Conclusions 

The simple semiempirical local approach, based on the localization criterion for 
the molecular orbitals, modifies any quantumchemistry calculation scheme so that 
effective electron correlation at the defect states can be estimated self-consistently. 
Echnically, the approach gives a correction to the usual Fbck matrix of the closed- 
or open-shell Hartree-Fock method. 

The problem of dangling-bond negative4 centres in Si has been considered. 
The large-unit-cell model has been found to be rather realistic-crystal valence 
band structure, defect structure of the vacancy and of the vacancy with three 
passivated dangling bonds, vacancy reconstruction and electron-lattice parameters 
all fit theoretical and experimental data. Models of S k v  and Si:(VH,)- demonstrate 
the self-consistent and reconstruction-dependent nature of the dangling-hond effective 
correlation correction AE. 

A E  calculated for near the equilibrium reconstructions can be identified 
with the correlation energy U of two electrons occupying a dangling-bond bound 
state. However, A E depends on two Jahn-Teller distortions and selfconsistently 
depends on a resonant dangling-bond state, thus making negative-U phenomenology 
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unreliable, especially when applied to the far-from-equilibrium reconstructions (like 
in migration or reorientation processes). 

A E  calculated for (VH3)- cannot be identified with a correlation parameter 
U and, therefore, negative4 phenomenology for this centre must meet certain 
difficulties. In fact, such is the situation around a dangling bond in a-Si:H. The 
present work confirms negative-U theory for SkVH, ,  but shows that the parameter 
U cannot be simply linked to the total energy. For example, values of U, having the 
same order as for SiV, give an unrealistically large correlation correction to the total 
energy of Si:(VH,)-. 
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